Signatures of finite representation of real, simple Lie algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 265873
(http://iopscience.iop.org/0305-4470/26/21/025)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:59

Please note that terms and conditions apply.

Signatures of finite representation of real, simple Lie algebras

A N Rudy
Department of Mathematics, Byelarussian State Polytechnical Academy, Scarina av., 65, Minsk, Republic Byelarus

Received 21 January 1993

Abstract

The paper deals with the arbitrary irreducible representations of simple Lie algebras of types $G_{2}, F_{4}, B_{r}, C_{r}, D_{r}$ and the Hermitian forms being invariant relative to this representation. Formulas and tables for calculating Hermitian forms signatures are obtained.

1. Introduction

Consider an irreducible reprepresentation $\varphi: g \rightarrow s l(V)$ of simple complex Lie algebra g. Let λ be the highest weight, and let χ_{k} be the character of the representation φ. Denote by g_{σ} any real form of inner type for the algebra g. From [1] it follows that $\varphi\left(g_{\sigma}\right) \subset s u(p, q)$, where $p+q=\operatorname{dim} V$. Let $\delta=p-q$. Formulas for calculation of δ in the case of simple classical Lie algebras were obtained in [1]. Formulas for $|\delta|$ in the case of real algebras $G, F I, F I I, s o(p, q)$ where obtained in [2] and [3]. Finite $s u(p, q)$ representations were considered in [4]; in particular, the formulas for δ in the case of algebras $s u(1,1) s u(2,1), s u(2,2), s u(3,1)$ where obtained there.

2. Definitions

Let g_{τ} be the fixed compact real form of the algebra g, and let τ be the conjugation of the algebra g with respect to g_{r}. Consider an involution θ of the algebra g such that $\theta\left(g_{\tau}\right)=g_{r}$. Then $g_{\tau}=(1+\theta) g_{\tau}+(1-\theta) g_{r} . \quad$ Let $\quad \sigma=\tau \circ \theta=\theta \circ \tau, \quad g_{\sigma}=(1+\theta) g_{\tau}+$ $\sqrt{-1}(1-\theta) g_{r}$. Therefore g_{σ} is a real form of the algebra g, and σ is a conjugation of the algebra g with respect to g_{σ}. The real form is called the real form of inner type, if θ is an inner automorphism of g_{r}, that is $\theta \in \operatorname{Int}\left(g_{\tau}\right)$. Suppose t is a Cartan subalgebra of the algebra g_{z} such that $\theta(t)=t, h$ is a Cartan subalgebra of g such that $t^{\mathcal{C}}=h, R$ is a root system associated with the pair (g, h). Let $B($,$) be a Killing form of g$, and let

$$
(,)=-\frac{1}{(2 \pi)^{2}} B(,)
$$

be a positive definite scalar product on t. Let $\alpha \in R$; by H_{α} denote an element of h such that $B\left(H_{a}, H\right)=\alpha(H)$ for all $H \in h$. Define the embedding $\psi: R \rightarrow t$ by $\psi(\alpha)=2 \pi \sqrt{-1}$
H_{a} for all $\alpha \in R$. Suppose $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ is a set of the simple roots of $R,\left\{H_{i}\right\}_{i=1}$ is a basis of t such that $\left(H_{i}, \alpha_{j}\right)=\delta_{i j}, i, j=1, \ldots, r$. If $\theta \in \operatorname{Int}\left(g_{z}\right)$, then without loss of generality $\theta=\exp \left(\operatorname{ad}\left(H_{i_{0}} / 2\right)\right)$ for some $i_{0}, 1 \leqslant i_{0} \leqslant r[5]$. Let R be the root system dual to R, that is

$$
R^{\Sigma}=\left\{\left.\frac{2 \alpha}{(\alpha, \alpha)} \right\rvert\, \alpha \in R\right\}
$$

Suppose W is a Weyl group of $R, P\left(R^{\imath}\right)$ is a group of weights for R^{2} [6], and $W_{a}^{\prime}=W * P\left(R^{\prime}\right)$ is a semidirect product of the groups W and $P\left(R^{\prime}\right)$.

3. The formula for $|\boldsymbol{\delta}|$

From [1] it follows that $\varphi\left(g_{o}\right) \subset s u(p, q)$ if and only if there exists a linear operator A on V such that

$$
\begin{equation*}
\varphi(\theta(x))=A^{-1} \varphi(x) A \quad \forall x \in g \tag{1}
\end{equation*}
$$

and $A^{2}=1$. Furthermore, $|\operatorname{Tr} A|=|\delta|$. From [2] it follows that if $\theta=\exp \left(\operatorname{ad}\left(H_{i_{0}} / 2\right)\right)$, then there exists a weight vectors basis of g-module V such that A is diagonal in it. Furthermore

$$
\begin{equation*}
\left.|\delta|=|\operatorname{Tr} A|=\mid \chi_{2}\left(H_{i_{0}} / 2\right)\right) \mid \tag{2}
\end{equation*}
$$

where χ_{2} is the character of the irreducible representation φ. Consider a function

$$
A_{\lambda+\rho}(H)=\sum_{s \in W} \operatorname{det} s \exp (2 \pi \sqrt{-1}(s(\lambda+\rho), H))
$$

where

$$
\rho=\frac{1}{2} \sum_{\beta \in R, \beta>0} \beta
$$

is half the sum of the positive roots R, and W is the Weyl group. Then [5]

$$
\begin{equation*}
A_{\rho}(H)=(2 \sqrt{-1})^{t} \prod_{\beta \in R, \beta>0^{\circ}} \sin (\pi(\beta, H)) \tag{3}
\end{equation*}
$$

where l is the number of positive roots. From the Weyl character formula $A_{\rho}(H) \chi_{\lambda}(H)=A_{\lambda+\rho}(H)$ it follows that

$$
\begin{equation*}
|\delta|=\left|\chi_{\lambda}(H)\right|=\left|\lim _{t \rightarrow 1} \frac{A_{\lambda+\rho}(t H)}{A_{\rho}(t H)}\right| \tag{4}
\end{equation*}
$$

where $H=H_{i_{0}} / 2$. For all \bar{H} such that $\bar{H}=w\left(H_{i_{0}} / 2\right)$, where $w \in W_{a}^{\prime}$, it follows that $|\delta|=\left|\chi_{i}\left(H_{i_{0}} / 2\right)\right|=\left|\chi_{i}(\tilde{H})\right|$. So we can give the following definition. The elements H_{1}, H_{2} are called equivalent if there exists $s \in W$ such that $s\left(H_{1}\right)-H_{2} \in P\left(R^{k}\right)$, and we shall write $H_{1} \equiv H_{2}\left(\bmod P\left(R^{v}\right)\right)$:

The foregoing proves the theorem.
Theorem 1. Let g_{σ} be a real form of simple complex algebra $g, \theta=\sigma \circ \tau=$ $\exp \left(\operatorname{ad}\left(H_{i_{0}} / 2\right)\right)$, and χ_{i} the character of the irreducible representation $\varphi: g \rightarrow s l(V)$.

Then $\varphi\left(g_{q}\right) \subset s u(p, q)$, and $\delta=p-q$ satisfies formula (4), where $H \equiv H_{i_{0}} / 2$ $(\bmod P(R))$.

4. The case $\boldsymbol{g}=\boldsymbol{G}_{\mathbf{2}}, \boldsymbol{g}_{\sigma}=\boldsymbol{G}$ [2]

The extended Dynkin diagram for G_{2} is

$$
\begin{aligned}
& a_{1} \not a_{2} \\
& 0 \neq 0-0
\end{aligned}
$$

We shall take the roots realization from [6], that is $\left|\alpha_{1}\right|=\sqrt{2},\left|\alpha_{2}\right|=\sqrt{6}$. The element $H=H_{2} / 2$ defines automorphism $\theta=\exp (\operatorname{ad} H)$. Let ω_{1}, ω_{2} be basis representations of G_{2}. This means that

$$
\frac{2\left(\omega_{i}, a_{k}\right)}{\left(\alpha_{k}, \alpha_{k}\right)}=\delta_{i, k} ; i, k=1,2
$$

Then

$$
\begin{aligned}
& H_{2}=\frac{2 \omega_{2}}{\left(\alpha_{2}, \alpha_{2}\right)}=\frac{\omega_{2}}{3} \\
& H_{1}=\frac{2 \omega_{1}}{\left(\alpha_{1}, \alpha_{1}\right)}=\omega_{1} .
\end{aligned}
$$

Furthermore

$$
\begin{aligned}
\frac{H_{2}}{2} \equiv \frac{H_{2}}{2}+H_{1}+H_{2} & =\frac{\omega_{2}}{6}+\omega_{1}+\frac{\omega_{2}}{3}=\frac{1}{2}\left(\rho+\omega_{1}\right) \\
& =\frac{1}{2}\left(\rho+2 \alpha_{1}+\alpha_{2}\right) \equiv \frac{1}{2}\left(\rho+\alpha_{2}\right) \equiv \frac{1}{2}\left(\rho-\alpha_{2}\right) \equiv \frac{1}{2} \rho\left(\bmod P\left(R^{\vee}\right)\right)
\end{aligned}
$$

Hence from (4) it follows that

$$
\begin{equation*}
|\delta|=\left|\lim _{t \rightarrow 1} \frac{A_{\lambda+\rho}\left(\frac{1}{2} t \rho\right)}{A_{\rho}\left(\frac{1}{2} t \rho\right)}\right|=\left|\lim _{t \rightarrow 1} \frac{A_{\rho}\left(\frac{1}{2} t(\lambda+\rho)\right)}{A_{\rho}\left(\frac{1}{2} t \rho\right)}\right| \tag{5}
\end{equation*}
$$

Let $\lambda=\lambda_{1} \omega_{1}+\lambda_{2} \omega_{2}$ be a highest weight of the representation φ. The limit in (4) depends on whether λ_{1}, λ_{2} are even or odd. Thus from (3) and (5) table 1 is derived for the calculation of δ.

Table 1. The signatures $|\delta|$ of the representation $0 \neq 0$ of G.

$\lambda_{1} \neq \lambda_{2}$	
$0 \neq 0$	$\|\delta\|$
$\dot{c} \neq 0$	$\frac{1}{8}\left(\lambda_{1}+3 \lambda_{2}+4\right)\left(\lambda_{1}+\lambda_{2}+2\right)$
$\dot{0} \neq 0$	$\frac{1}{8}\left(\lambda_{2}+1\right)\left(2 \lambda_{1}+3 \lambda_{2}+5\right)$
$0 \neq 0$	$\frac{1}{8}\left(\lambda_{1}+1\right)\left(\lambda_{1}+2 \lambda_{2}+3\right)$
$0 \neq 0$	
$0 \neq 0$	0

Symbol $e(o)$ in the column λ_{i} denotes an even (odd) λ_{i}.

5. The case $\boldsymbol{g}=\boldsymbol{F}_{4}, \boldsymbol{g}_{\sigma}=\boldsymbol{F I I}$

The extended Dynkin diagram for F_{4} is

$$
\begin{array}{r}
\alpha_{1} \alpha_{2} \\
0-0-0
\end{array} \stackrel{\alpha_{3}}{0}-\frac{\alpha_{4}}{0} 0
$$

We shall take the roots realization from [6], that is $\left|\alpha_{1}\right|=\left|\alpha_{2}\right|=\sqrt{2},\left|\alpha_{3}\right|=\left|\alpha_{4}\right|=1$. The element $H=H_{4} / 2$ defines automorphism $\theta=\exp (\operatorname{ad} H)$. Let $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ be basis representations of F_{4}. Then $H_{1}=\omega_{1}, H_{2}=\omega_{2}, H_{3}=2 \omega_{3}, H_{4}=2 \omega_{4}$. Furthermore

$$
\begin{aligned}
& \frac{H_{4}}{2} \equiv \frac{H_{4}}{2}+H_{1}+H_{2}+H_{3}=\omega_{4}+\omega_{1}+\omega_{2}+2 \omega_{3}=\rho+\omega_{3} \\
& \quad=\rho+2 \alpha_{1}+4 \alpha_{2}+6 \alpha_{3}+3 \alpha_{4} \equiv \rho+3 \alpha_{4} \equiv \rho-\alpha_{4} \equiv \rho\left(\bmod P\left(R^{\vee}\right)\right) .
\end{aligned}
$$

Hence from (4) it follows that

$$
\begin{equation*}
|\delta|=\left|\lim _{t \rightarrow 1} \frac{A_{\lambda+\rho}(t \rho)}{A_{\rho}(t \rho)}\right|=\left|\lim _{t \rightarrow 1} \frac{A_{\rho}(t(\lambda+\rho))}{A_{\rho}(t \rho)}\right| \tag{6}
\end{equation*}
$$

Let

$$
\lambda=\sum_{i=1}^{4} \lambda_{i} \omega_{i}
$$

be the highest weight of the representation φ. The limit in (6) depends on whether λ_{3}, λ_{4} are even or odd. From (3) and (6) table 2 is derived for the calculation of δ.

Table 2. The signatures $|\delta|$ of the representation $\begin{gathered}\lambda_{1} \lambda_{2} \\ 0-0 \neq 0-0 \text { of } \\ \lambda_{3} \lambda_{4}\end{gathered}$ II.

$\begin{aligned} & \lambda_{1} \lambda_{2} \not \lambda_{3} \lambda_{4} \\ & o-o \neq 0-o \end{aligned}$	$\|\delta\|$
$\begin{aligned} & a=a \neq 0 \\ & 0-0 \neq 0-0 \end{aligned}$	0
$\begin{aligned} & a \quad a \neq e \\ & o-a \neq 0-c \end{aligned}$	$\frac{1}{2^{11} 3^{4} 5^{2} 7} A_{1} A_{2} A_{5} A_{8} A_{9} A_{10} A_{11} A_{12} A_{14} A_{16} A_{18} A_{19} A_{20} A_{22} A_{23} A_{24}$
$\begin{aligned} & a=0 \\ & 0-0 \neq 0-0 \end{aligned}$	$\frac{1}{2^{11} 3^{4} 5^{27}} A_{1} A_{2} A_{4} A_{5} A_{11} A_{12} A_{13} A_{14} A_{15} A_{16} A_{17} A_{18} A_{20} A_{22} A_{23} A_{24}$
$\begin{aligned} & a=0 \\ & 0-0 \neq 0-o \end{aligned}$	$\frac{1}{2^{11} 3^{4} 5^{2} 7} A_{1} A_{2} A_{3} A_{5} A_{6} A_{7} A_{11} A_{12} A_{14} A_{16} A_{18} A_{30} A_{21} A_{22} A_{29} A_{24}$

[^0]Table 3. The elements $A_{i}(i=1, \ldots, 24)$ which are the scalar products $(\beta, \lambda+\rho), \beta \in R$, $\beta>0$.

$A_{1}=\lambda_{1}+1$	$A_{2}=\lambda_{2}+1$	$A_{3}=\frac{1}{2}\left(\lambda_{3}+1\right)$
$A_{4}=\frac{1}{2}\left(\lambda_{4}+1\right)$	$A_{5}=\lambda_{1}+\lambda_{2}+2$	$A_{6}=\frac{1}{2}\left(2 \lambda_{2}+\lambda_{3}+3\right)$
$A_{7}=\frac{1}{2}\left(2 \lambda_{1}+2 \lambda_{2}+\lambda_{3}+5\right)$	$A_{8}=\frac{1}{2}\left(2 \lambda_{1}+2 \lambda_{2}+\lambda_{3}+5\right)$	$A_{9}=\frac{1}{2}\left(2 \lambda_{1}+2 \lambda_{2}+\lambda_{3}+\lambda_{4}+6\right)$
$A_{10}=\frac{1}{2}\left(\lambda_{3}+\lambda_{4}+2\right)$	$A_{11}=\lambda_{2}+\lambda_{3}+2$	$A_{12}=\lambda_{1}+\lambda_{2}+\lambda_{3}+3$
$A_{13}=\frac{1}{2}\left(2 \lambda_{2}+2 \lambda_{3}+\lambda_{4}+5\right)$	$A_{14}=\lambda_{1}+2 \lambda_{2}+\lambda_{3}+4$	$A_{15}=\frac{1}{2}\left(2 \lambda_{1}+2 \lambda_{2}+2 \lambda_{3}+\lambda_{4}+7\right)$
$A_{16}=\lambda_{2}+\lambda_{3}+\lambda_{4}+3$	$A_{17}=\frac{1}{2}\left(2 \lambda_{1}+4 \lambda_{2}+2 \lambda_{3}+\lambda_{4}+9\right)$	$A_{18}=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+4$
$A_{19}=\frac{1}{2}\left(2 \lambda_{1}+4 \lambda_{2}+3 \lambda_{3}+\lambda_{4}+10\right)$	$A_{20}=\lambda_{1}+2 \lambda_{2}+\lambda_{3}+\lambda_{4}+5$	$A_{21}=\frac{1}{2}\left(2 \lambda_{1}+4 \lambda_{2}+3 \lambda_{3}+2 \lambda_{4}+11\right)$
$A_{22}=\lambda_{1}+2 \lambda_{2}+2 \lambda_{3}+\lambda_{4}+6$	$A_{23}=\lambda_{1}+3 \lambda_{2}+2 \lambda_{3}+\lambda_{4}+7$	$A_{24}=2 \lambda_{1}+3 \lambda_{2}+2 \lambda_{3}+\lambda_{4}+8$

Table 4. The signatures $|\delta|$ of the representation $\begin{gathered}\lambda_{1} \lambda_{2} \\ 0-o \neq 0\end{gathered} \lambda_{0}^{\lambda_{3}} \lambda_{4}$ of $F l$.

$\begin{array}{ll} \lambda_{1} \lambda_{2} \\ 0-0 \neq 0 & \lambda_{3} \lambda_{4} \end{array}$	$\|\delta\|$
$\begin{aligned} & a \quad a \\ & o-o \neq 0 \\ & o \neq O \end{aligned}$	0
$\begin{aligned} & e \quad e \quad e \\ & o-a \neq 0 \end{aligned}$	$\frac{1}{2^{\mathrm{II} 3^{25}} A_{5} A_{8} A_{9} A_{10} A_{11} A_{14} A_{18} A_{19} A_{22} A_{24}, ~}$
$\begin{aligned} & e=e \\ & o-o \neq 0 \end{aligned}$	$\frac{1}{2^{11} 3^{2} 5} A_{4} A_{5} A_{11} A_{13} A_{14} A_{15} A_{16} A_{17} A_{20} A_{23}$
$\begin{aligned} & e e^{e} \neq 0 \\ & 0-0 \neq 0-0 \end{aligned}$	$\frac{1}{2^{11} 3^{25}} A_{3} A_{5} A_{6} A_{7} A_{12} A_{16} A_{20} A_{21} A_{22} A_{24}$
$\begin{aligned} & e \circ=e \\ & 0-o \neq 0-o \end{aligned}$	$\frac{1}{2^{11} 3^{25}} A_{2} A_{8} A_{9} A_{10} A_{12} A_{14} A_{16} A_{19} A_{22} A_{23}$
$\begin{aligned} & c \circ o \\ & o-o \neq 0 \end{aligned}$	$\frac{1}{2^{11} 3^{2} 5} A_{2} A_{4} A_{12} A_{13} A_{14} A_{15} A_{17} A_{18} A_{20} A_{24}$
$\begin{aligned} & c \circ o \\ & o-o \neq 0-0 \end{aligned}$	$\frac{1}{2^{11} 3^{2} 5} A_{2} A_{3} A_{6} A_{7} A_{11} A_{18} A_{20} A_{21} A_{22} A_{23}$
$\begin{aligned} & 0 \text { oe } e^{e}=0-0=0 \end{aligned}$	$\frac{1}{2^{11} 3^{2} 5} A_{1} A_{8} A_{9} A_{10} A_{11} A_{12} A_{19} A_{20} A_{23} A_{24}$
$\begin{aligned} & 0 \\ & 0-o \neq 0 \\ & 0 \end{aligned}$	$\frac{1}{2^{11} 3^{2} 5} A_{1} A_{4} A_{11} A_{12} A_{13} A_{15} A_{16} A_{17} A_{18} A_{22}$
$\begin{aligned} & 0-{ }^{e} \neq 0-c \\ & 0-o \neq 0-0 \end{aligned}$	$\frac{1}{2^{11} 3^{2} 5} A_{1} A_{3} A_{6} A_{7} A_{14} A_{16} A_{18} A_{21} A_{23} A_{24}$
$\begin{gathered} 0 \\ 0-o \neq 0-c \end{gathered}$	$\frac{1}{2^{11} 3^{2} 5} A_{1} A_{2} A_{5} A_{8} A_{9} A_{10} A_{16} A_{18} A_{19} A_{20}$
$\begin{array}{ll} 0 & 0 \\ 0-0 \neq 0-0 \end{array}$	$\frac{1}{2^{12} 3^{25}} A_{1} A_{2} A_{3} A_{5} A_{6} A_{7} A_{11} A_{12} A_{14} A_{2!}$
$\begin{array}{ll} 0 & 0 \\ 0-0 \neq 0 & 0 \end{array}$	$\frac{1}{2^{11} 3^{2} 5} A_{1} A_{2} A_{4} A_{5} A_{13} A_{15} A_{17} A_{22} A_{23} A_{24}$

The elements $A_{i}, i=1, \ldots, 24$, have the same meaning as in table 2 .
Table 5. The signatures $|\sigma|$ of the representation ${ }^{\lambda_{1}} \neq \sigma$ of $s o_{2,3}, s o_{1,4}$.

| $\left.\begin{array}{lll}\lambda_{1} & \lambda_{2} \\ o \neq o & \|\delta\| \text { for } g_{\sigma}=s O_{2,3} & \|\delta\| \text { for } g_{\sigma}=s o_{1,4} \\ \hline a \neq 0 & 0 & 0 \\ o \neq 0 & 0 & \\ i \neq i & \frac{1}{2}\left(\lambda_{1}+\lambda_{2}+2\right) \\ o \neq i \\ 0 & =i & \frac{1}{2}\left(\lambda_{1}+1\right)\end{array}\right\}$ | $\frac{1}{2}\left(\lambda_{1}+1\right)\left(\lambda_{1}+\lambda_{2}+2\right)$ |
| :--- | :--- | :--- |

Table 6. $g=$ so $_{7}(\mathbb{C})$.

g_{σ}		$\|\delta\|$
So ${ }_{3,4}$	$\begin{gathered} a \\ 0-0 \\ 0.0 \\ 0 \end{gathered}$	0
	$\stackrel{\text { éo }}{0-0}$	$\frac{1}{16}\left(\lambda_{1}+\lambda_{2}+2\right)\left(\lambda_{1}+2 \lambda_{2}+\lambda_{3}+4\right)\left(\lambda_{2}+\lambda_{3}+2\right)$
	-	$\frac{1}{16}\left(\lambda_{1}+1\right)\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+3\right)\left(\lambda_{2}+\lambda_{3}+2\right)$
		$\frac{1}{16}\left(\lambda_{2}+1\right)\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+3\right)\left(\lambda_{1}+2 \lambda_{2}+\lambda_{3}+4\right)$
	${ }^{0}-0 \neq 0$	$\frac{1}{16}\left(\lambda_{1}+1\right)\left(\lambda_{2}+1\right)\left(\lambda_{1}+\lambda_{2}+2\right)$
so ${ }_{2,5}$		0
		${ }_{48}\left(2 \lambda_{1}+\lambda_{3}+3\right)\left(\lambda_{1}+\lambda_{2}+2\right)\left(\lambda_{1}+2 \lambda_{2}+\lambda_{3}+4\right)\left(\lambda_{2}+\lambda_{3}+2\right)$
	\bigcirc	${ }_{45}\left(2 \lambda_{1}+4 \lambda_{2}+\lambda_{3}+7\right)\left(\lambda_{1}+1\right)\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+3\right)\left(\lambda_{2}+\lambda_{3}+2\right)$
	-0 0	$\frac{1}{48}\left(2 \lambda_{1}-\lambda_{3}+1\right)\left(\lambda_{2}+1\right)\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+3\right)\left(\lambda_{1}+2 \lambda_{2}+\lambda_{3}+4\right)$
	$\stackrel{0}{0}-0^{\circ} \neq 0$	$\frac{1}{48}\left(2 \lambda_{1}+4 \lambda_{2}+3 \lambda_{3}+9\right)\left(\lambda_{1}+1\right)\left(\lambda_{2}+1\right)\left(\lambda_{1}+\lambda_{2}+2\right)$

Table 7. $g=s o_{7}(\mathbb{C}), g_{\sigma}=s O_{1,6}$.

$\begin{aligned} & \lambda_{1} i_{2} \not \lambda_{3} \\ & 0-0 \neq 0 \end{aligned}$	$\|\delta\|$
a a 0	
$0-0 \geq 0$	0
$a_{a-a}^{a} \neq 0$	${ }_{46}\left(\lambda_{1}+1\right)\left(\lambda_{2}+1\right)\left(\lambda_{1}+\lambda_{2}+2\right)\left(\lambda_{2}+\lambda_{3}+2\right)\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+3\right)\left(\lambda_{1}+2 \lambda_{2}+\lambda_{3}+4\right)$

Table 8. $g=s p_{6}(\mathrm{C}), g_{\sigma}=s p_{1,2}$.

$\begin{aligned} & \lambda_{1} \lambda_{2} \\ & 0-0 \neq 0 \end{aligned}$	$\|\delta\|$
$\stackrel{e}{c}-o \neq o$	$\frac{1}{45}\left(\lambda_{3}+1\right)\left(\lambda_{2}+\lambda_{3}+2\right)\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+3\right)\left(\lambda_{1}+\lambda_{2}+2\right)\left(\lambda_{1}+\lambda_{2}+2 \lambda_{3}+4\right)$
$0-0 \not 0$	$\frac{1}{48}\left(\lambda_{3}+1\right)\left(\lambda_{2}+\lambda_{3}+2\right)\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+3\right)\left(\lambda_{2}+1\right)\left(\lambda_{2}+2 \lambda_{3}+3\right)$
${ }_{0}^{0}-{ }^{\circ} \leqslant 0$	$\frac{1}{48}\left(\lambda_{3}+1\right)\left(\lambda_{2}+\lambda_{3}+2\right)\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+3\right)\left(\lambda_{1}+1\right)\left(\lambda_{1}+2 \lambda_{2}+2 \lambda_{3}+5\right)$
$\stackrel{\circ}{0-0} 0$	0

Table 9. $g=s p_{6}(\mathbb{C}), g_{\sigma}=s p_{6}(\mathbb{R})$.

$\begin{aligned} & \lambda_{1} \lambda_{2} \lambda_{3} \\ & -0 \neq 0 \end{aligned}$	$\|\delta\|$
	$\frac{1}{16}\left(\lambda_{2}+\lambda_{3}+2\right)\left(\lambda_{1}+\lambda_{2}+2\right)\left(\lambda_{1}+\lambda_{2}+2 \lambda_{3}+4\right)$
$\stackrel{0}{0} 0$	$\frac{1}{16}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+3\right)\left(\lambda_{2}+1\right)\left(\lambda_{2}+2 \lambda_{3}+3\right)$
$\stackrel{\circ}{0-0} 0$	$\frac{1}{16}\left(\lambda_{3}+1\right)\left(\lambda_{1}+1\right) \cdot\left(\lambda_{1}+2 \lambda_{2}+2 \lambda_{3}+5\right)$
in other cases	0

Table 10. $g=s o_{6}(\mathbb{C}), g_{a}=s o_{4,4}$.

Symbols $e(o, a)$ have the same meaning in tables 1-10.

6. The case $g=F_{4}, g_{\mathrm{g}}=F I$

The element $H=H_{1} / 2$ defines automorphism $\theta=\exp (\operatorname{ad} H)$. Similarly

$$
\begin{aligned}
\frac{H_{1}}{2} \equiv \frac{H_{1}}{2}+H_{2} & +H_{3}+H_{4}=\frac{1}{2}\left(\rho+\omega_{2}+3 \omega_{3}+3 \omega_{4}\right)=\frac{1}{2}\left(\rho+\omega_{3}\right. \\
& \left.+\omega_{4}-\alpha_{1}-2 \alpha_{2}-2 \alpha_{3}-2 \alpha_{4}\right) \equiv \frac{1}{2}\left(\rho+\omega_{3}+\omega_{4}\right)\left(\bmod P\left(R^{`}\right)\right)
\end{aligned}
$$

Note that

$$
\rho+\omega_{3}+\omega_{4}=\rho^{*}=\frac{1}{2} \sum_{\beta^{*} \in R^{*}, \beta^{*}>0} \beta^{*}
$$

Hence from (4) it follows that

$$
\begin{equation*}
|\delta|=\left|\lim _{t \rightarrow 1} \frac{A_{\rho} \cdot\left(\frac{1}{2} t(\lambda+\rho)\right)}{A_{\rho}\left(\frac{1}{2} t \rho^{*}\right)}\right| \tag{7}
\end{equation*}
$$

The limit in (7) depends on whether $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ are even or odd. From (3) and (7) we derive table 4 for the calculation of δ.

7. The case $g=s o_{5}(\mathbb{C})$

The extended Dynkin diagram for B_{2} is

$$
\stackrel{a}{1}^{o} \neq o
$$

We shall take the roots realization from [6], that is $\left|a_{1}\right|=\sqrt{2},\left|a_{2}\right|=1$. The element
$H=H_{2} / 2$ defines automorphism $\theta=\exp (\operatorname{ad} H)$ for algebra so $o_{1,4}$. Let ω_{1}, ω_{2} be basis representations of B_{2}. Then $H_{1}=\omega_{1}, H_{2}=2 \omega_{2}$. Furthermore

$$
\left.\left.\frac{H_{2}}{2}=\frac{H_{2}}{2}+H_{1}=\omega_{2}+\omega_{1}=\rho(\bmod) P R^{\check{y}}\right)\right)
$$

Hence from (4) it follows that

$$
\begin{equation*}
|\delta|=\left|\lim _{t \rightarrow 1} \frac{A_{\rho}(t(\lambda+\rho))}{A_{\rho}(t \rho)}\right| . \tag{8}
\end{equation*}
$$

The element $H=H_{1} / 2$ defines automorphism $\theta=\exp (\operatorname{ad} H)$ for algebra $\mathrm{so}_{2,3}$. Similarly

$$
\frac{H_{1}}{2} \equiv \frac{H_{1}}{2}+H_{2}=\frac{1}{2} \omega_{1}+2 \omega_{2}=\frac{1}{2}\left(\rho+3 \omega_{2}\right) \equiv \frac{1}{2}\left(\rho+\omega_{2}\right)\left(\bmod P\left(R^{\prime}\right)\right) .
$$

Note that

$$
\rho+\omega_{2}=\rho^{*}=\frac{1}{2} \sum_{\beta^{*} \in \mathcal{R}^{*}, \beta^{*}>0} \beta^{*} .
$$

Hence from (4) it follows that

$$
\begin{equation*}
|\delta|=\left|\lim _{t \rightarrow 1} \frac{A_{\rho^{*}}\left(\frac{1}{2} t(\lambda+\rho)\right)}{A_{\rho}\left(\frac{1}{2} t \rho^{*}\right)}\right| \tag{9}
\end{equation*}
$$

Let $\lambda=\lambda_{1} \omega_{1}+\lambda_{2} \omega_{2}$ be the highest weight of the representation φ. The limits in (8) and (9) depend on whether λ_{1}, λ_{2} are even or odd. Similarly, from (8) and (9) we derive table 5 for the calculation of δ.
8. The cases $g=s o_{7}(\mathbb{C}), s o_{8}(\mathbb{C}), s p_{8}(\mathbb{C})$

Discussing this in the same way, we obtain tables 6-10 for the calculation of $|\delta|$.

Acknowledgments

The author is grateful to professor B Komrakov for presenting the problem and to Miss J Goings for technical aid.

References

[1] Karpelevich F I 1955 Proc. Mosc. Math. Soc. 4 3-112
[2] Komrakov B P and Rudy A N 1989 Izvest. Acad. Sci. BSSR. Ser. Fiz. Mat. Navuk 5 27-34
[3] Rudy A N 1992 Izvest. Acad. Sci. Rep. Byel. Ser. Fiz. Mat. Navuk 3-4 33-39
[4] Patera J and Sharp R T 1984 J. Math. Phys. 5 2128-2131
[5] Goto M and Grosshans F D 1978 Semisimple Lie algebras (New York: Dekker)
[6] Burbaki N 1968 Groupes et algebras de Lie (Paris: Hermann) ch IV-VI.

[^0]: Symbol e (o) in the column λ_{i} denotes an even (odd) λ_{1}. Symbol a denotes any λ_{i} independent of whether it is even or odd. The elements $A_{i}, i=1, \ldots, 24$, must be taken from table 3.

